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ABSTRACT: In this work, we present an efficient numerical algorithm
for the solution of molecular density functional theory (DFT) in
cylindrical geometry to facilitate the study of how curvature affects the
microstructure and phase behavior of inhomogeneous fluids. The new
solution algorithm is shown to have a better time scaling than the
elliptic function method by Malijevsky ̀ [J. Chem. Phys. 2007, 126,
134710] and the transform method by Lado [J. Comput. Phys. 1971, 8,
417−433]. Convergence, performance, and stability of the numerical
algorithm are discussed. We showcase two representative applications
of the new method for modeling fluid adsorption and bottlebrush
polymers using a specific DFT, interfacial statistical associating fluid
theory (iSAFT). By comparing iSAFT with molecular simulation
results, we found that iSAFT predicts layering transitions above the
triple point for methane adsorption, and it captures power-law to parabolic transitions for polymer brush microstructure.

1. INTRODUCTION

In recent years, classical density functional theory (DFT) has
been successfully applied to study the microscopic structure of
inhomogeneous fluids after the successful introduction of
fundamental measure theory (FMT) by Rosenfeld1 and to
model complex polymeric fluids with the extension of chain
connectivity based on Wertheim’s theory.2,3 When a fluid
experiences an external field, inhomogeneous phenomena such
as fluid adsorption, capillary condensation, self-assembly, etc.,
are observed. While density functional theory accurately
predicts the equilibrium fluid structure with a three-dimen-
sional degree of freedom, it is prevalent to set the fluid
distribution as one-dimensional (1D) in space by assuming
density symmetry parallel to an interface, for example, fluid
adsorbed in a slit-pore, cylindrical pore, and spherical cavity
and polymer tethered to a planar wall, cylindrical nanorod, and
spherical nanoparticle. Mathematical manipulations are neces-
sary to reduce density functional theory from a three-
dimensional formulation to a one-dimensional formulation.
The planar geometry DFT formulation can be easily obtained
since the vectorial notations in weighted densities remain
unchanged in Cartesian coordinates. The polar geometry
formulations such as cylindrical and spherical situations are
more involved.4 DFT in spherical geometry can be formulated
using elementary functions.5 However, cylindrical DFT
formulation requires successive calculations of elliptic
functions of the first and second kinds as provided by

Malijevsky.̀6 The implementation of the cylindrical DFT
formulation by direct integration is thus nontrivial.
The Fourier transform method becomes an alternative route

to solve density functional theory. The convolutional weighted
densities and functional derivatives in DFT can be efficiently
calculated in Fourier space. An early attempt in applying the
Fourier transform to solve density functional theory was
studied by Sears and Frink.7 However, different numerical
challenges arise in cylindrical geometry. The Fourier transform
of DFT in cylindrical geometry has to be completed by the
zeroth-order Hankel transform.
The Hankel transform naturally appears in many physical

problems when the Fourier transform is applied to a
cylindrically symmetric system. In optical theory, the Hankel
transform provides a method to solve the paraxial wave
equation, which describes the dynamics of cylindrical electro-
magnetic waves such as a laser beam.8 In quantum mechanics,
the Hankel transform is the key part in the pseudospectral
method,9 which effectively calculates the radial part of the
Laplacian operator of the Schrödinger equation, and it
provides a reduction in grid size compared with the finite
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difference method.10 In statistical mechanics of equilibrium
fluids, the Hankel transform can be applied to solve
convolution-type integral equations by algebraically solving
the transformed integral equation in Fourier space.11 A
classical example is the Ornstein−Zernike equation that
defines the direct correlation function. Lado11 provides a finite
domain numerical implementation of Hankel transform by
imposing a vanishing condition at the boundary. This method
requires a matrix kernel to complete the transform. Therefore,
it is not an efficient implementation compared to the standard
fast Fourier transform (FFT) method. Siegman provides a
quasi-fast Hankel transform (QFHT) by applying an
exponential transformation.12,13 Magni et al. modified Sieg-
man’s formulation and provided a fast Hankel transform with
high accuracy.14 This formulation only requires vector kernel
to complete the transform in which an efficient FFT algorithm
can be applied. In this work, we extend the use of fast Hankel
transform as an efficient algorithm for the solution of interfacial
statistical associating fluid theory (iSAFT).
Interfacial statistical associating fluid theory (iSAFT), a

particular classical density functional theory by Tripathi and
Chapman15 and Jain et al.,16 is an extension of statistical
associating fluid theory (SAFT)17 for inhomogeneous fluid. It
has the advantage of modeling complex molecules beyond
spherical shapes by including short-ranged association for
water and alcohol,18 homogeneous chain connectivity for
hydrocarbons,19 heterogeneous chain connectivity for block
copolymers,20 and branching effect for dendrimers21 and star
polymers.22

The previous studies using iSAFT focus on systems in planar
geometry. However, including curvature is important to
understand the equilibrium properties of inhomogeneous
fluids at nanoscale and mesoscale. The vapor pressure of
forming a spherical nanodroplet depends on both surface
tension and the droplet radii.23 Roth et al.24 using density
functional theory showed that the depletion forces near curved
surfaces strongly deviate from the flat wall limit. The curvature
effect has to be considered for modeling forces exerted onto
the colloidal particles enclosed in vesicles. For hard-sphere
fluids having curved interfaces, the surface tensions are shown
proportional to the logarithm of the radius of interface
curvature by using density functional theory.25 Forsman and
Woodward26 studied the colloidal force between two spherical
colloids dissolved in polymers using DFT of ideal chains with
generalized Flory dimer (GFD) free energy functional.
Excellent agreement was found with the Derjaguin approx-
imation.27 Hlushak used density functional theory of hard-
sphere and Yukawa potential to study the optimal pore size for
gas storage in fluid adsorption. It is found that the optimal pore
size of a cylindrical pore is significantly more dependent on
bulk pressure than slit-pore.28 For long-chain polymers, Binder
et al.29 reported that cylindrical polymer brushes have two
distinctive structures at low and high cylinder radius compared
to flat polymer brushes. Therefore, it is necessary to
continuously extend the applications of iSAFT to curved
systems. Interesting systems of inhomogeneous fluids under
spherical geometry have been investigated using iSAFT. These
include the excellent agreement versus molecular simulation
for the potential of mean force between colloids in a polymer
melt30 and self-assembled micelle formation.5,31 In this work,
we developed an efficient algorithm for iSAFT in cylindrical
geometry as a tool for more specialized problems. We detail
two applications of iSAFT in cylindrical geometry. The first

case is the adsorption of methane in a cylindrical pore with
Steele potential. The second case is bottlebrush polymers in
implicit solvents. Given the versatility of iSAFT for accurately
modeling spherical molecules and chain molecules, the
development of an efficient solution algorithm for iSAFT will
lead to further studies of complex fluids under cylindrical
geometry.
The article is outlined as follows: Section 2 describes the

theoretical framework of iSAFT free energy functional. Section
3 details the implementation of the algorithm. Section 4
verifies the algorithm and discusses the performance,
convergence, and stability of the new algorithm. Section 5
showcases how it can be applied to modeling fluid adsorption
in cylindrical nanopores and to modeling bottlebrush
polymers.

2. ISAFT FREE ENERGY FUNCTIONAL
Density functional theory states that the equilibrium density
distribution of inhomogeneous fluids is determined by the
minimization of grand potential

A Vr r rd ( ) ( )ext∫∑ρ ρ ρ μΩ[ ] = [ ] − [ − ]
α

α α α

The minimization of grand potential produces the Euler−
Lagrange equation

A
V

r r
r

( ) ( )
( ( )) 0extδ ρ

δρ
δ ρ
δρ

μΩ[ ] = [ ] − − =
α α

α α
(1)

This is solved iteratively to obtain the equilibrium density
distribution. Ω[ρ] and A[ρ] are the total grand potential and
Helmholtz free energy functional of the system, respectively.
ρα(r) is the spatial density distribution of component α. μα is
the chemical potential of component α. Vα

ext(r) is the external
potential for component α.
The free energy functional of iSAFT is based on

perturbation theory that the Helmholtz free energy can be
decomposed into reference fluid and perturbation

A A A A Aid hs disp chρ ρ ρ ρ ρ[ ] = [ ] + [ ] + [ ] + [ ]

where Aid[ρ], Ahs[ρ], Adisp[ρ], Aass[ρ], and Ach[ρ] are free
energy functional of ideal gas contribution, hard-sphere
contribution, dispersion contribution, association, and chain
contribution. The Euler−Lagrange equation (eq 1) under the
framework of perturbation theory is

A A A A A

V

r r r r r

r

( ) ( ) ( ) ( ) ( )

( ( ))

id hs disp ass ch

ext

δ ρ
δρ

δ ρ
δρ

δ ρ
δρ

ρ
δρ

ρ
δρ

μ

[ ] + [ ] + [ ] + [ ] + [ ]

= −
α α α α α

α α (2)

The ideal gas functional is

A k T r r rd ( ) ln( ( )) 1id
B ∫∑ρ ρ ρ[ ] = [ − ]

α
α α

and the functional derivative for ideal gas contribution is

A
k T

r
r

( )
ln ( )

id

B
δ ρ
δρ

ρ[ ] =
α

α
(3)

We use fundamental measure theory to approximate the
reference hard-sphere fluid free energy functional Ahs[ρ].
Fundamental measure theory constructs the free energy
density functional by weighting singlet fluid density using
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geometric properties of spheres. These weighted densities
ni[ρ(r)] are surface averaged, volume averaged, mean
curvature averaged, and Gaussian curvature averaged densities.
The free energy functional is4

A k T nr rd ( )i
hs

B ∫ρ[ ] = Φ[ ]
(4)

and the hard-sphere free energy density Φ[ni(r)] is given by

n n
n n

n

n n
n

r r r
r r n r n r

r

r r n r n r
r

( ) ( ) ln(1 ( ))
( ) ( ) ( ) ( )

1 ( )

( ) 3 ( ) ( ) ( )
24 (1 ( ))

v v

v v

0 3

1 2 1 2

3

2
3

2 2 2

3
2π

Φ = − −

+
− ·
−

+
− ·

− (5)

The functional derivative for the hard-sphere contribution
reads

A k T
nr r

r r
/

( ) ( )
( )

i v v i

i
hs

B

0,1,2,3, 1, 2

( )∑δ ρ
δρ

ω
[ ]

= ∂Φ
∂ ′

* − ′
α

α
= (6)

where * denotes spatial convolution.
The calculations of the weighted densities and the functional

derivative for the hard-sphere contribution require a few
special treatments for cylindrical geometry. A detailed
implementation is provided in the Supporting Information of
this work.
The dispersion contribution is calculated by applying the

weighed density approximation (WDA) approach to the
perturbed-chain SAFT (PC-SAFT)32 bulk free energy. The
WDA approach is similar to the method introduced by Sauer
and Gross.33 This method has been shown to provide an
accurate prediction for interfacial tension of mixtures and the
inhomogeneous free energy density reduces to the free energy
of PC-SAFT in the bulk limit. The key part of the WDA
approach is the weighted density field

d
dr r r r r

r r r

( )
1

( ) ( ) d

( ) ( )

4
3

3

avg

∫ρ
π

ρ

ρ ω

̅ = ′ Θ − | − ′| ′

= * | − ′|

α
α

α α

α α (7)

where Θ(r) denotes the Heaviside step function and dα is the
segment diameter for component α. The body average
weighting function is

d
dr r r r( )

3
4

( )avg
3ω

π
| − ′| = Θ − | − ′|α

α
α

dα is the temperature-dependent hard-sphere diameter of
component α as used in PC-SAFT32

d
k T

1 0.12 exp 3
B

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
σ= − −

ϵ
α α

α

From the coarse-grained weighted density field, the
inhomogeneous PC-SAFT dispersion Helmholtz free energy
functional can be determined by the following

A k T ar r r( ) ( ( )) ddisp
B

disp∫ρ ρ ρ[ ] = ̅ ̃ α̅ (8)

where ρ̅α(r) is the weighted density distribution given in eq 7.
Here, a ̃disp(ρ̅α(r)) denotes the PC-SAFT dispersion free energy
density calculated with the weighted density field

a I m m

mC I m m

r r

r

( ( )) 2 ( ) ( , )

( ) ( , )

disp
1

2 3

1 2
2 2 3

ρ πρ η σ

πρ η σ

̃ ̅ = − ̅ ̅ ̅ ϵ

− ̅ ̅ ̅ ̅ ϵ
α

(9)

The total weighted density for mixture is a sum of all of the
individual partial densities

r r( ) ( )∑ρ ρ̅ = ̅
α

α

and the mean PC-SAFT segment number is

m x m∑̅ = ̅
α

α α

The other terms in the free energy density a ̃disp(ρ̅α(r)) are
given by

x

m
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η π ρ σ

σ σ

η η
η
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α
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−

The universal integral I1 and I2 and the molecular parameters
σα, ϵα, and mα are the same as the ones used by PC-SAFT
equation of state.32

The calculation of the functional derivative due to dispersion
contribution is obtained by differentiating the Helmholtz free
energy given in eq 8

A k T a

r

r r

r
r r

/
( )

( ) ( ( ))

( )
( )

disp
B

disp
avgδ ρ

δρ
ρ ρ

ρ
ω

[ ]
=

∂[ ̅ ̃ ̅ ]
∂ ̅

* | − ′|
α

α

α
α

(10)

The associating free energy functional was first developed by
Segura and Chapman34,35 for inhomogeneous fluids. It is
further extended to associating polymer by Bymaster and
Chapman22

A k T r r r
r

d ( ) ln ( )
( )

2

1
2

ass
B

A
A

Ai

k
jjjjjj

y

{
zzzzzz

∫ ∑ ∑ρ ρ χ
χ

[ ] = ′ ′ ′ −
′

+

α
α

α
α

α

(11)

where χAα
(r) is the fraction of segment α at position r not

bonded at site A. The inhomogeneous unbonded fraction
involves solving integral equations in real space to provide an
accurate degree of association

r r r r r r( ) 1 d ( ) ( ) ( , )A
B

B
A B

1Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
∫ ∑ ∑χ ρ χ= + ′ ′ ′ Δ ′

β
β

−

α
β

β
α β

(12)

The association strength is similar to its original form in
SAFT except that it contains an inhomogeneous cavity
function
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yr r r r( , ) exp( ) 1 ( , )assA B
A Bκ βΔ ′ = [ ϵ − ] ′αβα β

α β (13)

where κ is a constant that includes the bonding volume and
orientation constraints and ϵAαBβ

ass is the association energy
between site A and site B from species α and β, respectively.
We approximate the inhomogeneous correlation function
yαβ(r, r′) for the reference hard-sphere fluid between segment
α and β as the geometric average of bulk radial distribution
functions at contact evaluated at average density ρ̅α(r)

15

y g gr r r r( , ) ( ( ), ) ( ( ), )1/2 1/2ρ σ ρ σ′ = [ ̅ ] [ ̅ ′ ]αβ
αβ αβ αβ αβ (14)

The functional derivative of association contribution is

A k T

y

r
r r r

r
r

r

/
( )

ln ( )
1
2

d ( )

(1 ( ))
ln ( )

( )

ass
B

A
A

B
B

Ä
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ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
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∑

δ
δρ

χ ρ

χ
δ

δρ

= − ′ ′

− ′
′

α γ β
β

γβ

α

α
α

β
β

(15)

The chain free energy functional derivative is derived from
the association free energy functional at the limit of complete
association16

A k T

y

r
r r r

r
r

/
( )

ln ( )
1
2

d ( )

ln ( )
( )

ch
B

A
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Ä
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δ
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= − ′ ′

′

α β β
β

ββ

α

′

′

α
α

(16)

here β′ refers to all of the segments that are bonded to segment
β.
By substituting functional derivatives (eqs 3, 6, 10, 15, and

16) into Euler−Lagrange equation (eq 1), equilibrium density
distributions can be solved by

D V I Ir r r r r( ) exp( ) exp ( ) ( ) ( ) ( )M
ext

1, 2,ρ βμ β= [ − ]α α α α α
(17)

where

D
A k T A k T A k T

y

r
r r r

r r
r
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( )
/
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/
( )

/
( )

1
2

d ( )
ln ( )

( )

hs
B

disp
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ÅÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑÑ
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δ
δρ

δ
δρ

δ
δρ

ρ
δ

δρ

= − − −

+ ′ ′
′

α
α α α

β β
β

ββ

α′

′

(18)

and μM is the bulk molecular chemical potential given by a
summation of bulk segment chemical potential μα of a chain

m

M ∑μ μ=
α

α
(19)

Here, m is the total number of segments. Two recursive
integrals I1,α and I2,α are essential to model chain molecules.
Information of covalent bonding is recursively shared among
all of the segments of polymers by a recurrence equation. Their
explicit forms are

I I Dr r r r r r( ) d ( ) exp ( ) ( , )1, 1, 1 1
1,∫= ′ ′ [ ′ ]Δ ′α α α

α α
− −

−
(20)

and

I I Dr r r r r r( ) d ( ) exp ( ) ( , )2, 2, 1 1
, 1∫= ′ ′ [ ′ ]Δ ′α α α

α α
+ +

+
(21)

The boundary conditions for I1 and I2 are I1,1 = 1 and I2,m = 1.

3. FAST HANKEL TRANSFORM ALGORITHM
3.1. Fourier Transform in Cylindrical Geometry.

Solving the Euler−Lagrange equation (eq 1) requires iterative
calculation of weighted densities and functional derivatives
(eqs 6, 10, 15, and 16), which are computationally expensive
since convolutions are involved. A natural approach to
circumvent this step is to apply the convolution theorem and
the FFT algorithm. Comparing with directly solving the
Euler−Lagrange equation (eq 1), utilizing the FFT algorithm
usually provides a speedup from N( )2 to N N( log ). This
method is well applied to a system with Cartesian mesh.7

The forward and backward two-dimensional Fourier trans-
form of a two-dimensional function are

g fk r k r r( ) ( ) exp(i ) d∫= ·
(22)

f gr k k r k( )
1

(2 )
( ) exp( i ) d2 ∫

π
= − ·

(23)

where f(r) = f(x, y) and g(k) = g(kx, ky). If the function f(r) is a
circularly symmetric function, i.e., f(r) = f(r) with

r x y2 2= + , its Fourier transform is also a circularly

symmetric function g(k) = g(k) with k k kx y
2 2= + . More

precisely, the forward and backward Fourier transforms of a
circular symmetric function are Hankel transforms of zeroth-
order

g k rf r J rk r( ) 2 ( ) (2 ) d
0 0∫π π=

∞

(24)

f r kg k J rk k( ) 2 ( ) (2 ) d
0 0∫π π=

∞

(25)

For inhomogeneous fluid in cylindrical geometry, the
density distribution ρα(r) reduces to ρα(r). Equations 22 and
23 reduce to Hankel transform

k r r J kr r( ) 2 ( ) (2 ) d
0 0∫ρ π ρ π̃ =α α

∞

(26)

r k k J kr dk( ) 2 ( ) (2 )
0 0∫ρ π ρ π= ̃α α

∞

(27)

where ρ̃α(k) is the Hankel transform of density distribution
ρα(r) in cylindrical geometry. J0 is zeroth-order Bessel function
of the first kind. Now, eqs 26 and 27 are Hankel transforms of
zeroth-order. Equations 26 and 27 have to be numerically
calculated. Lado11 introduced the finite discretized Hankel
transform by using the orthogonality between the zeroth-order
and first-order Bessel functions. By substituting q = 2πk for 2πk
in eqs 26 and 27, the discrete transform can be obtained by
considering the procedure by Lado11

q
J q r

q J z
r( )

4 ( )

( )
( )j

i

N
j i

N i
i

1

0
2

1
2∑ρ

π
ρ̃ =α α

= (28)

and its backward transform is

r
J q r

r J z
q( )

( )

( )
( )i

j

N
j i

N j
j

1

0
2

1
2∑ρ

π
ρ= ̃α α

= (29)
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The ri and qj are discretized real space grid and Fourier space
grid, respectively, and zi is the ith zero of J0. Equations 28 and
29 are matrix−vector products and the computation scales as

N( )2 with N as the number of mesh grid. Lado’s method11

therefore does not provide an efficient N N( log ) time
scaling.
3.2. Fast Hankel Transform. Additional speedup in

computing functional derivatives can be achieved by exploiting
a transformation of variables.14 The space variable r and
frequency variable k are first normalized by a spatial domain
cut-off b and a frequency cut-off λ. The function f(r) vanishes
when r is beyond b, more precisely f(r) = 0 if r ≥ b. The space
cut-off and the frequency cut-off are related by the space-
bandwidth product γ = λb.
By substituting with normalized variables, x = r/b and y = k/

λ, the truncated and normalized Hankel transforms (eqs 24
and 25) are

g y
b

xf x J xy x( ) 2 ( ) (2 ) d
0

1

0∫πγ
λ

πγ=
(30)

f x
b

yg y J xy y( ) 2 ( ) (2 ) d
0

1

0∫πγ λ πγ=
(31)

To numerically compute eqs 30 and 31, the domain, i.e., 0 ≤
x ≤ 1 needs to be further divided into N subintervals by
selecting the partition points χi, where 0 = χ0 < χ1 < ··· < χN =
1. The original function f(x) is evaluated at xi (i = 0, 1, ..., N −
1), where χi ≤ xi ≤ χi+1. f(xN) = 0 is set as a boundary
condition. The subintervals are defined in this way such that
there is exactly one point xi per subinterval. Because of the
partition, it is reasonable to assume that f(x) ≈ f(xi) for x
within the interval, i.e., χi < xi < χi+1. The divided integral of eqs
30 and 31 for each subinterval can be expressed as

xf x J yx x

f x
y

J y J y
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i i i i
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1 1 1 1
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(32)

where the second part of eq 32 is an analytical result if we
apply the approximation f(x) ≈ f(xi) for χi < xi < χi+1 and
realize the fact ∫ xJ0(x) dx = xJ1(x) + C. Summing over all of
the intervals and considering two boundary conditions J1(0) =
0 and f(xN) = 0, eq 30 can be numerically evaluated

g y
b
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i
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i i i i
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1

1 1 1 1∑
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The discretization process is based on exponential trans-
formation. A natural approach to set the partition point χi is

i

i N

0 for 0

e for 1, 2, ...,

i

i
i N( )

χ

χ

= =

= =α −
(34)

such that 0 = χ0 < χ1 < ··· < χN = 1 is satisfied.
The grids for xi and yj are also nonequidistant

x x i Ne for 0, 1, 2, ..., 1i
i

0= = −α
(35)

y x j Ne for 0, 1, 2, ..., 1j
j

0= = −α
(36)

The reason for applying the exponential transformation is
evident by analyzing the general Hankel transforms (eqs 24

and 25). If we treat the continuous variables r and k in eqs 24
and 25 as r = r0 e

αu and k = r0 e
αv and substitute them into eqs

24 and 25, we end up with the following cross-correlations that
can be efficiently evaluated by the FFT algorithm

g v f u j u v u( ) 2 ( ) ( ) d∫π̂ = ̂ ̂ +
−∞

∞

(37)

f u g v j u v v( ) 2 ( ) ( ) d∫π̂ = ̂ ̂ +
−∞

∞

(38)

where f(̂u) = rf(r), ĝ(v) = kg(k), and j(̂u + v) = αrkJ0(2πrk).
If we apply the discretization (eqs 35 and 36 to eq 33), we

obtain g̃(yj), a discretized g(y)
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Now, eq 39 can also be treated as a discrete cross-correlation
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where we define
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We can apply the efficient FFT algorithm to calculate eq 40
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where is forward Fourier transform and 1− is inverse
Fourier transform.
It is worthwhile to note that α and x0 in eq 39 are free

parameters to be determined. To ensure that every xi lies in
between χi and χi+1 for i = 1, 2, ..., N − 1, an inequality needs to
be satisfied
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Equation 41 suggests the average of its upper bound and
lower bounds is a good choice for x0, i.e., x0 = [e−αN +
eα(1−N)]/2. Because x0 does not lie in between χi and χi+1, f(x)
≈ f(x0) is an erroneous approximation for χ0 < x < χ1. Hence,
the factor k0 is an end correction factor36 to correct the
approximation for the end subinterval including the origin. The
correction factor ki is

k

i

i
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e (2e e 1)
(1 e ) (e 1)

for 0i
2 2

2 2
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≠
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(42)

The derivation of the end correction factor arises from
substituting f(x0) with f(x0

†), where f(x0
†) is the function f(x)

evaluated at a fictitious end x0
†. We interpolate f(x) for x ≤ x1

by quadratic parabola f(x) = a2x
2 + a0, which has no first-order
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term since we assume that the first-order derivative of the
quadratic parabola vanishes at the origin. f(x0

†) is an analytical

result of eq 32, i.e., xf x J yx x J y( ) (2 ) d (2 )f x
y0

( )
2 1 1

0

1 0∫ πγ πγ χ=
χ
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πγ
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.

More precisely
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We further simplify eq 43 by evaluating it at y = 0 so as to
avoid the dependency on y and to eliminate low-frequency
shift in practice. We obtain the correction factor k0 in eq 42
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It comes to the authors’ attention that Bota̧n et al.37

previously introduced a fast Hankel transform for density
functional theory. Bota̧n’s treatment is similar to the original
QFHT by Siegman12 without the end correction term. The
difference from this work is that we approximate the function
as constant over each subinterval, which leads to the different
kernel basis that we used. The time scaling of the
implementation is similar to that in this work. Bota̧n’s
treatment also ignores the end correction term, i.e., it does
not include the interval 0 < x < x0. The missing end correction
term can possibly lead to divergence at the origin, which we
will show in the next section. A more comprehensive
discussion on end correction term can be seen in the
reference.36

3.3. Choice of Parameters for Fast Hankel Transform.
To apply the new algorithm, a few parameters have to be
determined, such as the position of the first mesh, x0, the
maximum frequency cut-off, λ, the maximum space cut-off, b,
the number of mesh points, N, and free transformation
parameters, α. The accuracy of the algorithm depends on the
bandwidth, γ, which is the product of λ and b. The choice of
space cut-off b can be determined from a priori knowledge
about the system domain such as cylindrical pore radius R.
The choice of frequency cut-off λ depends on the nature of

function f(x) itself, which is the density distribution ρ(r) in this
study. In our study, it is found that λ increases with the system
domain size. An effective λ from 30 to 50 is used in this study
when the dimensionless system domain size varies from R* = 3
to 5. The number of grid points N is chosen to be from 29 to
211 for varying system domains. A choice for x0 has been given
previously. Another free parameter α can be determined by
setting the same width for the first and the last subintervals, i.e.,

χN − χN−1 = χ1 −χ0.1414 This gives a good choice for α: α =
−ln[1 − eα(1−N)].
Though it is desirable to have a higher frequency cut-off λ to

capture the rapid oscillation of fluid distribution, it leads to
insufficient sampling at high frequency. More grid points N
always increases sampling effectiveness, but it is computation-
ally expensive. A good criterion to balance these two
parameters is to enforce the least number of cycles between
two zeros of the Bessel kernel J0. The difference between two
zeros of Bessel function is approximately equal to π.38 If there
is at least one sampling between two zeros, then a relation
based on eqs 30 and 31 is

x2 e eN N
0

( 1) ( 2)πγ π[ − ] <α α− −
(44)

This inequality enforces that at least one Bessel zero is
sampled over the last two sampling points where it has the
largest grid spacing.

4. ANALYSIS OF THE ALGORITHM
In this section, we first compare the density distributions for
hard-sphere fluids in cylindrical geometry by DFT solved by
the proposed algorithm with the grand canonical Monte Carlo
(GCMC) simulation by Malijevsky,̀6 followed by a compre-
hensive analysis of convergence, performance, and stability of
the algorithm.

4.1. Verification of the Algorithm by Binary Hard-
Spheres in Hard Cylindrical Pores. Figure 1 shows the

density distribution of a binary mixture of hard-spheres

confined in hard cylindrical pores. The external potential of

a hard cylindrical pore is given by

Figure 1. Binary mixture of hard-spheres of size ratio 2:1 in a hard
cylindrical nanopore at overall bulk packing fraction (a) η = 0.3 and
(b) η = 0.4. Solid lines are results from this work. Symbols are
digitized molecular simulation results of Malijevsky.̀6
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Hard cylindrical pores with pore radii R/σ1 = 8 and overall
bulk packing fractions η = 0.3 and 0.4 are chosen. The packing
fraction is defined by η = ∑απρασα

3/6. The size ratio of large to
small hard-spheres is set as σ2/σ1 = 2. Good agreement
between molecular simulation and density functional theory
solved by the new method is found from low to high packing
densities, as shown in Figure 1a,b. At a low packing fraction η
= 0.3, both theory and simulation show that there is little fluid
structure except at the wall for both small and large particles.
At a high packing fraction η = 0.4, the small particle has a
three-layered strongly oscillatory fluid structure and two layers
of large particles are adsorbed on the hard cylindrical wall.
4.2. Convergence, Performance, and Stability. Since

we are interested in applying the new algorithm to density
functional theory, here, we discuss the convergence, perform-
ance, and stability of the new algorithm. For simplicity and
consideration of time, the analysis here is carried out for hard-
sphere fluids in hard cylindrical pores of pore radii Rmax* and a
bulk density ρB* = 0.8. ρ* = ρσ3 and R* = R/σ are
dimensionless. The mixing fraction for Picard iteration is
constant 1 × 10−2. The grid size is set to Δr* = 0.02 for Lado’s
method and Malijevsky’̀s elliptic function method. Since the
new algorithm has a nonequidistant grid, we set the last grid
spacing for the new method to Δrmax* = 0.02 for comparison.
The convergence is represented by using the residual norm

( )r r r( ( ) ( )) dk k1
2

1/2

∫ ρ ρϵ = * * − * * *+

where ρ* = ρσ3 and r* = r/σ. It is the square root of the total
squared residual of all of the grids from the kth to the (k + 1)th
iteration in solving eq 1. The convergences of Malijevsky’̀s
elliptic function method, Lado’s transform method, and this
work are shown in Figure 2. It is interesting that the
convergences of the elliptic function method and this work
are similar. They both reach a residual norm 1 × 10−4 after 500
iterations. However, Lado’s method has a slower convergence

rate. It requires 4000 iterations to reduce the residual norm to
1 × 10−4.
Though the convergence rates vary for different implemen-

tations, we are ultimately interested in knowing the machine
time to solve density functional theory across different
algorithms. Here, we show the scaling of time with respect
to the system domain size since the grid spacing is not uniform
for the new algorithm. The domain size Rmax* ranges from 2 to
16. We compare all of the three methods by enforcing the
largest grid spacing of our method to be the same as the grid
spacings of other methods. Lado’s method is faster than the
elliptic function method, as shown in Figure 3, though it has a

slower convergence rate per iteration, as seen in Figure 2. This
is because the computation of digamma functions required by
the elliptic function method is very expensive.6 The new
algorithm is faster than Lado’s method by another order of
magnitude. Though they are both Fourier transform methods,
Lado’s method requires an N( )2 operation as discussed
previously in eqs 26 and 27 compared to FFT’s N N( log )
scaling. The new method applies exponential transformation,
which converts the Hankel transforms (eqs 30 and 31) into
cross-correlations (eqs 37 and 38). Therefore, the efficient
implementation of the FFT algorithm can be directly applied
for calculating those computationally expensive convolutions
(eqs 6, 10, 15, and 16) in density functional theory. The
scaling of the new algorithm is not the best because of the
nonequidistant grids. However, it shows an excellent speedup
for the system of a small domain size in Figure 3. This makes
the algorithm especially efficient for the study of fluid
adsorption in a nanopore of zeolites, which have a pore size
of a few angstroms. Transform methods also provide additional
speedup because the weighting functions in fundamental
measure theory have closed-form solutions in Fourier space,
and they can be evaluated in (1) operation, as seen in the
Supporting Information. This further explains why the
transform methods are always faster than the elliptic function
method. For the calculations of methane adsorption, the
improvement is less significant than hard-sphere fluids but
faster by one order of magnitude. The free energy density

Figure 2. Residual norm changes with the number of Picard iterations
for hard-spheres adsorbed in a hard cylindrical pore of radius Rmax* = 8
at reduced bulk density ρB* = 0.8.

Figure 3. Time scaling for hard-spheres at reduced bulk density ρB* =
0.8 adsorbed in hard cylindrical pores of varying pore sizes. The
convergence time for each algorithm is measured on a single desktop
machine of Intel Core i7-6700 processor with a base frequency 3.40
GHz.
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derivative with respect to weighted densities in eq 10 requires
many local calculations at each grid point. This is because of
the universal integrals I1 and I2 in eq 9 from the second-order
perturbation contributions in PC-SAFT.32 These calculations
scale as cN( ) with N as the number of mesh grid and c
represents the number of computational operations of the PC-
SAFT dispersion term during implementation. As N can also
be a large number for nonequidistant mesh grids, this step
undermines the overall performances for systems with this kind
of dispersion term.
The Hankel transform can be regarded as an expansion of a

function by Fourier−Bessel series. The Gibbs phenomenon is
observed where the function has a jump discontinuity.39 It is
interesting that the Fourier−Bessel expansion exhibits a Gibbs-
like phenomenon close to the origin. Gray and Pinsky40

showed that the asymptotic behavior of Fourier−Bessel series
has a slower rate of convergence at the origin than at
surrounding points. For the zeroth-order Fourier−Bessel
expansion, which is the basis for the Hankel transform in
this work, of f(r) = 1 and its asymptotic behavior when k → ∞
and r ≠ 0 is40
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For k → ∞ and r = 0, the asymptotic form of f(r) = 1 is
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The rate of convergence at the origin is ( )k
1
3/2 and its

surrounding converges at a faster rate of ( )k
1

2 . The Gibbs-like

phenomenon at the origin can cause a divergence at the origin
of a cylindrical pore in density functional theory. Adding the
correction factor to the origin in eq 42 can improve the
stability of the solution method. A situation is demonstrated in
Figure 4 where a system solved by a maximum grid spacing of
Δr* = 3 × 10−3 without including the error correction term at
the origin diverges.

5. APPLICATION OF THE ALGORITHM FOR ISAFT
5.1. Methane Adsorbed under a Cylindrical Steele

10-4-3 Attractive Potential. The phase behavior of
hydrocarbons in nanoscale pores is important for oil and
natural gas production from tight formations41 and chemical
processing.42 The study of phase behavior of hydrocarbons
under reservoir conditions requires an inhomogeneous
thermodynamic model for hydrocarbons and surface potential.
Previously, DFT has been applied to model alkane adsorption
in mesoporous silica using smooth wall approximation for
MCM-4143 and SBA-15.44 Recently, the surface roughness and
random surface effect have also been studied using SAFT-
based DFT by Aslyamov et al.45 In this section, we show that
iSAFT with the recently developed cylindrical Steele 10-4-3
potential can be used to study the fluid distribution of methane
molecules in graphite cylindrical nanopores by applying the
new numerical algorithm. The modeling of methane
adsorption requires several parameters to characterize the
physical properties of methane, graphite wall, and the
interaction between methane and graphite.
The external potential used here is the Steele 10-4-346 type

of cylindrical potential provided by Siderius and Gelb.47 The
cylindrical Lennard-Jones (LJ) 9-3 potential48,49 and the
potential by Tjatjopoulos et al.50 have been exploited in
previous studies of fluid adsorption in cylindrical pores. The
potential by Tjatjopoulos has been successfully applied to
model adsorption in MCM-41 type materials and single-wall
carbon nanotubes. It suffers from the fact that this potential is
based on a single cylindrical shell model. Therefore, it does not
describe a confining wall with a multilayer structure, and it
cannot reduce to the Steele 10-4-3 potential in the infinite
large pore limit. The cylindrical Steele 10-4-3 potential is
dependent on the radial distance to the surface and pore
radius. It is given as47
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(47)

where ρs, ϵs, Δ, and σs are parameters of the solid wall to
represent the interactions between solid atoms and fluid
molecules.
The term ϕn(r, R, σs) can be calculated
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and ψn(r, R, σs) can be calculated
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where F(a, b; c; z) denotes the Gaussian hypergeometric
function, Γ(n) is the gamma function, and R is the radius of
the cylindrical pore. It can be shown that this cylindrical Steele
potential reduces to the planar Steele potential in the limit of

Figure 4. Solution provided by our method (solid line) and solution
provide by QFHT (dashed line) for hard-sphere fluid in a hard
cylindrical pore with R* = 3 and bulk density ρB* = 0.4 with a
maximum mesh size Δr* = 3 × 10−3. QFHT does not include a
correction factor at the origin.
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infinitely large pore.47 The pure-component parameters for
methane used in this study from PC-SAFT32 are m = 1, σ =
3.7039 Å, and ϵ/kB = 150.03 K. The binary interaction
parameters are provided in Table 1. The interaction
parameters between methane and graphite are obtained using
the Berthelot−Lorentz combining rules. α in eq 47 is set as
0.61 as empirical treatment.

In Figure 5a, we present the microscopic density profile for
methane adsorbed in a large cylindrical pore at R = 18.55 Å at

150 K. Two microscopic pictures of methane correspond to
the profile before and after capillary condensation. Microscopic
fluid structures of methane adsorbed in a small pore of R =
11.13 Å at 105 K are shown in Figure 5b. The exceptionally
high microscopic density at the center of the pore, that is due
to packing effect, is well demonstrated in Figure 5b.
Figures 6 and 7 show the adsorption isotherm of methane

for a cylindrical pore of radius R = 11.13 and 18.55 Å. The
adsorption is defined by

R r r r2/ ( ) d
R

2

0
∫ ρΓ =

(48)

where R is the radius of a cylindrical pore. For a smaller
nanopore of radii R = 11.13 Å, a single hysteresis loop is found
at T = 105, 120, and 135 K, which indicates first-order capillary
condensations. Sharp layering transitions are also found for
methanes adsorbed in a large nanopore of pore radii R = 18.55
Å at 105 and 120 K. Ball and Evans51 applied the mean-field
smoothed density approximation (SDA) density functional
theory to study the layering transition of Yukawa fluids under a
single wall and cylindrical walls of van der Waals potential.
They concluded that the layering transition predicted by
density functional theory occur at a temperature below the
triple point. A similar argument is made by Peterson et al.48 in
a study of LJ fluids’ adsorption in cylindrical pores of smeared-
out LJ 9-3 potentials using mean-field density functional
theory. They found that discontinuous first-order layering
transitions only occurred below bulk triple point, and the sharp
layering transition degraded into a smoothed transition at or
above the triple point. Discontinuous layering transition at
temperatures above triple points, however, have been reported
from well-designed experimental studies of methane adsorp-

Table 1. DFT Parameters for Methane Adsorption in
Graphite Carbon Nanopore

component σ (nm) ϵ/kB (K) ρs (nm
−3) Δ (nm)

CH4 0.37039 150.03 N.A. N.A.
graphite 0.34000 28.00 114 0.335
CH4−graphite 0.35520 64.81 N.A. N.A.

Figure 5. Density profiles of methane adsorbed in cylindrical
nanopores of radius R = 18.55 Å at 150 K (a) and R = 11.13 Å at
T = 105 K (b). Methane bulk pressures are set as 0.52 and 0.25 Psat in
(a), 0.20, and 0.01 Psat in (b). Solid lines represent density functional
theory results using the new algorithm. Markers represent our
molecular simulation results.

Figure 6. Methane adsorption isotherm in a cylindrical nanopore of
radius R = 11.13 Å. Isotherms are calculated by DFT at temperatures
T = 105, 120, 135, 150, and 165 K. Dashed lines and solid lines refer
to desorption and adsorption, respectively.

Figure 7. Methane adsorption isotherm in a cylindrical nanopore of
radius R = 18.55 Å. Isotherms are calculated by DFT at temperatures
T = 105, 120, 135, 150, and 165 K. Dashed lines and solid lines refer
to desorption and adsorption, respectively.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://dx.doi.org/10.1021/acs.iecr.9b06895
Ind. Eng. Chem. Res. 2020, 59, 6716−6728

6724

https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.9b06895?fig=fig7&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://dx.doi.org/10.1021/acs.iecr.9b06895?ref=pdf


tion52 and ethylene adsorption on graphite.53 In our study,
sharp first-order layering transitions are found in Figure 7 given
that the triple point for methane is 90.67 K. We attribute the
predicted layering transition above triple point in this study to
the non-mean-field dispersion free energy functional and the
application of cylindrical Steele potential.
The bulk critical point of methane is 190.6 K. Figures 6 and

7 show that the critical points for methane under a cylindrical
nanopore of R = 11.13 and 18.55 Å are much lower than
methane’s bulk critical point. We made no attempt to locate
the exact critical points for methanes adsorbed in graphite
cylindrical pores. However, the impact of nanopore curvature
on critical points is immediate from a comparison to
adsorption in slit-pore. Liu et al. studied the critical points of
methane adsorption in slit-like pores under Steele potential by
iSAFT and compared the predicted critical points with GCMC
simulation.19 For methane in slit-like pore of width 2 nm, the
critical point predicted by iSAFT is 158 K. In Figure 6,
methane adsorbed in a cylindrical pore of diameter 2.2 nm at
150 K is in a supercritical state. The lowered critical point for
methane adsorption in the cylindrical pore is due to stronger
eccentric confinement.
5.2. Modeling Bottlebrush Polymers. Polymer brushes

are a class of well-designed polymers that are grafted by one
end to surfaces of various shapes. Bottlebrush polymer refers to
1D polymer brushes grafted to a cylindrical backbone.54 The
well-studied synthesis for bottlebrush polymer and its enriched
architecture lead to many applications. For example, Djalali et
al. used nanogold as a backbone for bottlebrush polymers and
the hybrid metallic and cylindrical polymer brushes can be
used as nanowires.55 Zhang et al. grafted amphiphilic polymer
brushes to a backbone of carboxylate groups. Because of the
affinity of carboxylate groups to metal ions, this bottlebrush
polymer can be used as a cylindrical molecular nano-
reactor.56,57

Modeling bottlebrush polymers is a challenging task because
of the length-scale of the system. Self-consistent field theory
(SCFT) is a popular theoretical tool for modeling bottlebrush
polymers. Unlike density functional theory, none of the
variations of SCFT58,59 can capture local packing effect and
layering effect, which are important for understanding solvent
distributions and solvation forces.29 DFT has been used to
model the structure of planar polymer brushes60−62 and
spherical polymer brushes.63 Significant numerical efforts are
required for modeling bottlebrush polymers by DFT because
of cylindrical geometry.29 Here, we use iSAFT to model
bottlebrush polymers in implicit solvent. Segments interact
with each other by hard-sphere repulsion and tangential
bonding. Further details of the molecular model for grafted
polymers can be found in our previous study of polymer
brushes tethered to flat surfaces.64 The details of molecular
dynamics simulation that we compare theoretical results with
are given in the Supporting Information.
The iSAFT free energy functional of bottlebrush polymers in

this study has ideal contribution, hard-sphere contribution, and
chain contribution, which are given in Section 2. The
contribution of solvents and dispersion will be subjects of
future work. To tether the polymers onto a cylindrical
backbone, we need to add an external potential. The end
segment that is grafted to a backbone is under an external
potential

V r
v r R

( )
if ( /2)

otherwise
1
ext

l
moo
noo

σ
=

= +

∞
α

(49)

and for the other segments

V r
r R

( )
for ( /2)

0 otherwise
ext

l
moo
noo

σ
=

∞ ≤ +
α

α

(50)

where R is the backbone radius of bottlebrush polymers and σα
is the segment diameter of polymers. The segment diameter is
not temperature-dependent since the system is athermal.
The density profile for end segment can be calculated from

eq 17

D v I I(0) exp( ) exp (0) (0) (0)1 M 1 1,1 2,1ρ βμ β= [ − ]
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α α α α

α α α α α
α

(51)

Chain connectivity for all of the segments of bottlebrush
polymers are modeled by the recursive integrals I1,α and I2,α in
Section 2 except that

I r
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The external potential v for the first segment in eqs 49 and 51
is calculated from the grafting density ρg of bottlebrush
polymers

r r r

D v I I

d ( )

exp exp (0) (0) (0)

g 1 1 1 1

M 1 1,1 2,1

∫ρ ρ

βμ β

=

= [ ] [ − ] (52)

then, density profiles for all segments are

r
I I

D r I r I r

r R
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2
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1,1 2,1
1, 2,ρ
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α
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(53)

Figure 8 shows the distribution of polymer brushes grafted
to a planar surface (a) and to a cylindrical surface for
bottlebrush polymers (b). The backbone radius R is set to 1σ.
A small radii means a large curvature, which can effectively
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differentiate the bottlebrush polymers in Figure 8a from planar
polymer brushes in Figure 8b. The grafting densities of (a) and
(b) are fixed at ρgσ

3 = 0.1. The chain lengths of polymer
brushes range from 20 to 120. A power-law shape is observed
for a bottlebrush polymer profile and a parabolic shape is
observed for polymer grafted to a flat surface. This also agrees
with the study by Wijmans and Zhulina65 using the analytical
self-consistent field (SCF) model. The curvature effects from
the surface shape lead to different levels of repulsive force
exerted onto monomers. The spans of polymer brush density
distributions, as seen in Figure 8a,b, imply different scaling
laws for the radius of gyration, which is confirmed by other
studies.65,66

Figure 9 shows how the microstructure of polymer brushes
vary for different curvatures at fixed grafting density and fixed
chain length. As the radius of bottlebrush backbone increases, a
continual transition from a power-law to parabolic distribution
is observed. A flat surface can be treated as a limiting case of
infinitely large radius. The density of the adsorbed polymers
close to backbones also increases because larger radii result in
stronger entropic repulsive forces. It can be seen that the
convergence process toward a zero curvature flat wall is very
slow. This is also found by Roth et al. in a study of depletion
force exerted by curved surfaces.24

6. CONCLUSIONS
iSAFT has been successful in modeling the behaviors of
inhomogeneous fluids. A numerical challenge however existed
for the application of iSAFT to fluids in cylindrical geometry.
We have presented an efficient numerical solution method in
resolving this problem by using fast Hankel transform on a
nonequidistant grid. Improvement in numerical efficiency and

time scaling are achieved. Two applications of the methods are
discussed. Interesting physical insights are obtained including
theory predicts layering transitions above the triple point for
methane adsorption in nanopores and theory captures power-
law to parabolic transitions of polymer brush microstructure.
We conclude that the continuous development of solution
algorithm for iSAFT enables researchers to investigate
curvature effects for fluids in an efficient manner.
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